Boosting Higher-Order Correlation Attacks by Dimensionality Reduction
نویسندگان
چکیده
Multi-variate side-channel attacks allow to break higher-order masking protections by combining several leakage samples. But how to optimally extract all the information contained in all possible d-tuples of points? In this article, we introduce preprocessing tools that answer this question. We first show that maximizing the higher-order CPA coefficient is equivalent to finding the maximum of the covariance. We apply this equivalence to the problem of trace dimensionality reduction by linear combination of its samples. Then we establish the link between this problem and the Principal Component Analysis. In a second step we present the optimal solution for the problem of maximizing the covariance. We also theoretically and empirically compare these methods. We finally apply them on real measurements, publicly available under the DPA Contest v4, to evaluate how the proposed techniques improve the second-order CPA (2O-CPA).
منابع مشابه
Large Margin Discriminant Dimensionality Reduction in Prediction Space
In this paper we establish a duality between boosting and SVM, and use this to derive a novel discriminant dimensionality reduction algorithm. In particular, using the multiclass formulation of boosting and SVM we note that both use a combination of mapping and linear classification to maximize the multiclass margin. In SVM this is implemented using a pre-defined mapping (induced by the kernel)...
متن کامل2D Dimensionality Reduction Methods without Loss
In this paper, several two-dimensional extensions of principal component analysis (PCA) and linear discriminant analysis (LDA) techniques has been applied in a lossless dimensionality reduction framework, for face recognition application. In this framework, the benefits of dimensionality reduction were used to improve the performance of its predictive model, which was a support vector machine (...
متن کاملManifold Learning Towards Masking Implementations: A First Study
Linear dimensionality reduction plays a very important role in side channel attacks, but it is helpless when meeting the non-linear leakage of masking implementations. Increasing the order of masking makes the attack complexity grow exponentially, which makes the research of nonlinear dimensionality reduction very meaningful. However, the related work is seldom studied. A kernel function was fi...
متن کاملDiagnosis of Diabetes Using an Intelligent Approach Based on Bi-Level Dimensionality Reduction and Classification Algorithms
Objective: Diabetes is one of the most common metabolic diseases. Earlier diagnosis of diabetes and treatment of hyperglycemia and related metabolic abnormalities is of vital importance. Diagnosis of diabetes via proper interpretation of the diabetes data is an important classification problem. Classification systems help the clinicians to predict the risk factors that cause the diabetes or pre...
متن کاملBoosting Kernel Discriminant Analysis and Its Application on Tissue Classification of Gene Expression Data
Kernel discriminant analysis (KDA) is one of the most effective nonlinear techniques for dimensionality reduction and feature extraction. It can be applied to a wide range of applications involving highdimensional data, including images, gene expressions, and text data. This paper develops a new algorithm to further improve the overall performance of KDA by effectively integrating the boosting ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2014 شماره
صفحات -
تاریخ انتشار 2014